339. Griseofulvin Analogues. Part VIII.* Infrared Absorption of Griseofulvic Acid and Related Compounds.

By J. E. PAGE and SUSAN E. STANIFORTH.

The infrared absorptions of 47 analogues of griseofulvic and dechlorogriseofulvic acid and of their 2',4'-bisethylene ketals and of 22 analogues of griseofulvin and isogriseofulvin are described. The effects of carbonyl, alkyl, alkoxy-, alkylthio-, halogen, and basic substituents are discussed.

We have discussed previously 1 the infrared absorption spectra of simple analogues of griseofulvin and isogriseofulvin and have suggested structural assignments for their principal absorption bands. Our survey has now been extended to solid-state and solution spectra of griseofulvic acid (I; R = R' = MeO, R'' = Cl) and of 46 related compounds. The solid state (Nujol mull or potassium chloride disc) spectra of griseofulvic acid and its simple analogues differ considerably from those of the corresponding bromoform solutions and are also frequently more complex than those for related griseofulvin and isogriseofulvin analogues. The differences are in general attributed to intermolecular hydrogen-bonding effects.

Carbonyl Stretching Bands.—Griseofulvic acid and its simpler 4,6-dialkoxyl analogues, which are much less soluble in bromoform and in the normal infrared solvents than are griseofulvin and its analogues, were examined as saturated solutions in bromoform on an infrared spectrophotometer fitted with ordinate scale expansion (see Table 1). The solution spectra show a relatively weak carbonyl stretching band at 1744-1710 cm.⁻¹ and a more intense carbonyl band at 1694-1690 cm.⁻¹; additional absorption appears at 1676-1660 cm.⁻¹. The 3-ketone probably absorbs at 1694-1690 cm.⁻¹, and either the 2'- or 4'-ketone at 1676—1660 cm.⁻¹ as a result of conjugate chelation with the enolised 4'- or 2'-ketone, respectively.² The weak 1744—1740 cm.⁻¹ band, which is more prominent in dilute solution spectra, is probably caused by direct interaction between the 3-ketone and unenolised 2'-ketone and may have an origin similar to that of the displaced carbonyl stretching bands shown by 21-acetoxy-20-oxo-steroids.³

3'-Alkylation of griseofulvic acid (e.g., II; R = R''' = H, R' = Cl, R'' = Me) leads to increased solubility in bromoform and displaces the carbonyl bands to 1718-1698 and 1668 - 1655 cm⁻¹ (see Table 2); the former band is associated with the 3-ketone, which cannot enolise, and the latter band with an $\alpha\beta$ -unsaturated ketone in enolised ring c. A weak band for bonded hydroxyl appears at 3450-3280 cm.⁻¹. 3'-Halogenation of griseofulvic acid affects the carbonyl frequency of the $\alpha\beta$ -unsaturated ketone, but does

^{*} Part VII, J., 1963, 1610.

Page and Staniforth, J., 1962, 1292.
 Bellamy, "The Infra-red Spectra of Complex Molecules," Methuen & Co., Ltd., London, 1958, 2nd edn., p. 142.

³ Jones, Humphries, and Dobriner, J. Amer. Chem. Soc., 1950, 72, 956.

	AL	osorption ba	spun	(cm.)I (+	or 4- and 6-alk	coxy-analogues	of griseofulvic acid and of dechlorogris Absorption bands (cm. ⁻¹)	seotulvic acid (CHBf ₃ solution).
	Ŭ	(I) punoduic							
ľ.	Я	R'	1	۳ چ	Ref.	stretching	stretching	1490 - 1210	1090730
1	ОН	MeO		н	ъ	1735 w 1695 m 1676 s 1644 s	1610s $1600s$	*	*
61	MeO	MeO	-	Н	5	1742m 1690s 1660s	1616s 1592s 1502m	1466—1460s 1435s 1384w 1368m 1350s 1242s 1220s	$1068m \ 1000s \ 968w \ 842m \ 820m$
ŝ	ОН	MeO	-	ü	ą	1745m 1685s 1665s	1640s 1615s	*	*
4	MeO	ОН	J	ü	с	1722m 1664s	1640s 1612s 1500s 1538s	1466s 1450s 1422—1410s 1390—1382m 1358s 1940s 1918m	1070m 1008m 972w 920w 845m 814m
õ	MeO	MeO	0	ū	υ	1740m 1688s	1610s 1592s 1610s 1592s	14665 12405 121000 14665 12405 1434m 14025 1386w 1348s 1985m 1918c	÷
9	MeO	EtO	5	ü	p	1744m 1692s	1614-1594s		•
t~	MeO	PraO	0	ü	ą	1744m 1692s	1205m 1614s 1590s 1508m	14661460s 1448s 1410s 1384m 1356s 1248s 1216s	1006m 978w 954w 920w 888w 850w 800m 766w
æ	MeO	Pr ⁱ O	J	ü	p.	1744m 1692s	1614s 1590s 1508m	1466s 1448s 1420—1408s 1382m 1370m 1350m 1950m 1918s	1000m 916w 888w 834w 800m
6	MeO	BunO	~	U	ą	1744m 1692s	1616s 1590s	1466-1460s 1448s 1410s 1384m 1350s	1006m 954w 920w 894w 844w 800m 780w
10	MeO	C ₁₆ H ₃₃ O	J	ū	q	1745m 1692s	1622—1590s 1628—	12005 12105 14665 14485 14105 1382m 13505 1248m 19145	1006m 918w 888w 848w 800m 780w
11	MeO	CH2;CH•CH	I20 (U	q	1744m 1690s	1616s 1590s 1508m	14185 14488 14128 1384m 13508 12528 19188	1008m 980w 935w 890w 850w 800m 782w
12	MeO	PhCH ₂ •O	0	ü	q	1742m 1690s	1616—1590s 1506s	14665 14448 14088 1384m 13508 13408 1950m 1918s	1030w 1002s 978m 912w 890w 845w 798m 780w 738m
13	MeO F+O	Pyrrol- idin-1-yl F+O		5 5	ە ر	1745m 1716m 1676s 1744m 1609s	1612s 1572s 1520m 1616s 1506s	1485m 1454s 1424s 1388m 1362—1350s 1260s 1240s *	1068m 1006m 915w 868w 828w 798m *
15	MeS	MeS		55	υ	1742m 1690s 1648s	1616	1454s 1430—1420s 1375m 1252m 1230s	1055m 1010w 976m 962w 850m 810m
						*	Insufficiently sc	oluble to give measurable bands.	
	Refs .	(a) Rof 4	(4)	Atble	Δ	Attanhimmon Ca	leW bue wrone	1-ar I 1069 1960 (c) Grove MacMillar	Mulholland and Romare I 1059 2040

TABLE 1.

Griseofulvin Analogues. Part VIII.

Kets.: (a) Ket. 4. (b) Arkley, Attenburrow, Gregory, and Walker, J., 1962, 1260. (c) Grove, MacMillan, Mulholland, and Kogers, J., 1952, 3949. (d) MacMillan, J., 1959, 1823. (e) Gregory, Goodall, and Walker, preceding paper.

ci	
Ë	
ABI	
Η	

olution). id (CHR. -l---• of dechlo . ح ÷ 4 č 4 4 4 Ę. à de fo Absorption bar

(CHBr ₃ solu	
or decilorogriseotulyic acid	rption bands (cm. ⁻¹)
I griseofulvic and	Absor
derivatives of	
3 -substituted	
ands for	

						R		924w		880w		860m		918w		г			870w		1 990s		876w		890w			000	800m		
ſ	•		v 792m		1 790m	m 7981		955w		918w		892w		944w		m 784n			898w		1016n	792m	898w		925w			000	890w		
		730	w 832v		a 832m	8w 868		975w	×	978w		970m		964w		m 8001			932m		1030m	v 820s	918w		968w				928w		
			3m 885		m 890n	[8m 89		1006m	m 776v	1000s	s 875w	1000m		1000s	v 752m	3m 864			976m	~	1044m	w 8651	970m	s 772w	980w		5m		972w		
			0m 918		8s 9601	006s 91		035w	8w 800	028w	8w 795	032m	M	1032w	8s 774v	4m 878			1006s	Js 780v	064m]	006 mC	1000s)798;	000m	8m	9878		1000s		
			1002s 97		1012s 99	1076m 1		1048w 1	900w 87	1042w]	840w 818	1062w 1	800s 775	1066m	860m 79	1002s 91			1040m	838w 80	1085m 1	935w 92	1028m	840w 80	1068w]	814m 79	1000m 7		1068m 780m	277.	
-			1348s		1244m	1352s		1350s		1348s		1350s		1350s		1350s			350		1328s		l384m		1384w		1384w		[386m	, 1962, 1	
			1390m		1348s	1388m		1386m		1384w		l386m		1386w		1390m			384m 1		1372s		1404s]		1405s		1406s		406s]	ebb, J.	
		-1210	1406s		[384m	1408s		1408s]		1410s		[408s]		1408s		[410s]			408s 1		[385m		1418		1416		1415		[4]6]	and W	
- d toport		1490-	1436s		1402s]	l438m		1438s		1438s		1438s	1220s	1438s		1438s			438m 1	220s	1425s]		436m	218s	438m	220s	.438m	5077	[438s] 220s	urton,	
			1460s	1218s	l435m	1462s]	220s	1462s	1220s	1462s	218s	1462s	1245m	1462s	1220s	1462s	1220s		1462s 1	250m]	1462s	1220s	1462s 1	244m l	1462s 1	244m 1	[462s]		[462s] 242m]	c, Warb	
			1468	1244m	1466s	1470	1234s 1	1470	1246m	1470	1248s 1	1470	1268w	1470	1244m	1470	1272m		1470	1340s 1	1470	1245m	1470	1346s 1	1470]	1350s 1	1470	I SOCCI	1470— 1350s 1) Walker	
-	ပူ	ching	1594s		1590s	1594s	ı	1594s	1500m	[570s		1590s		1592s	1500m	1594s	1544s		590s	508m	.580s	504s	590s	l 536s l 494m	592s		502s		1592s	. 5. (g	2
	0	stre	1616s	1508m	1612	1616s	1508m	1616s	1508m	1616-	1508m	1616s	1508m	1616s	1508s	1620s	1570s	1510m	1620 - 1	1534s 1	1620-	1538s 1 1494m	1616—1	1575s 1508m	1616-1	1508s	1616	10005	1616s 1508s	(f) Ref	
	ဂူ	tching			1698	1698s		1698s		1694s		1702—		1692s		1694s									1680s		1680s		1676s	Ref. 4.	
ί	Ö	stre	1698s		1735w 1600c	1714m	1658m	1714m	1656s	1710m	1655m	1734m	1690s	1732m		1714m			1702s		1698s		1698s		1710s		1710s	•	1710s	fs.: (a)	
		Ref.	f		44	f		f		4-1		Ŧ		44		ъ			6		ъ		ъ		50		20		ы	Re	
H)		R	Η		Н	Η		Η		H		Me		CH ₂ Ph		H			Н		Η		H		н		Η	}	H		
R		:						Ч		H2Ac				ч																	
(I) buu		R	Me		Ę	Pr^{n}		CH ₂ P		CH ₂ .C		Me		CH ₂ P.		N0°			NHAG		NHB:		NHB		ü		Br	,	П		
Jompo		Ŗ	C	į	5	IJ		Ũ	i	5		ü	i	J		Ũ			Ũ		Н		Ũ		IJ		IJ	į	ü		
)		No.	16		17	18		19		20		21		22		23			24		25		26		27		28	00	29		

ĽЕ
TAB

Absorption bands for 5- and 3'-substituted griseofulvic acid (CHBr $_3$ solution).

Absorption bands (cm.⁻¹)

Absorption bands for 2',4'-bisethyleneketals of griseofulvic and of dechlorogriseofulvic acid analogues (CHBr₃ solution). f ,

		1090 - 730	776s 1044m 1028m 998s 948m 906w 868w	32s 824m 800m	0.14s = 1038s = 1002s = 950m = 902w = 878w = 860w	2011 0105 73011 1745 10495 10005 079 047 004 080	120 812m 788w 776w	174s 1054m 1045m 1000s 983m 948m)8w 880w 842m 812m 787m	072s 1040s 1003s 980m 952m 906w 884	14w 838m $796s$ $780m$)74s 1046s 1000s 980s 950s 926m 906w	30w 848w 812w 798m 776w 766m)74s 1044s 1002s 954-944m 906w 892m	76w 842m 800s 784m)72s 1042s 1002s 970m 958m 946m 905w)4m 875w 838m 794w 780m)78s 1040m 1004s 950m 904w 880w 842w)0m)74s 1044m 1008s 975w 962w 945m 912)5m 876w 842w 824m 786—776m	
Absorption bands (cm. ⁻¹)		1490-1210	1484s 1464s 1444m 1420w 1382w 1362s 1	1350-1338s 1276w 1235m 1210s	1468—1460s 1438s 1430s 1384m 1370s 1	10005 10005 10245 12/1011 12405 12205 0 14806 14956 1204*** 12806 12366 12906 1	1275w 1238s 1004 10045 10005 10405 10405 10405 10405 10405 10405	1464m 1448m 1435m 1418m 1362s 1345m 1	1252s 1215s 9	1468-1460s 1438s 1416s 1382w 1350s 1	1270w 1243m 1218s 8	1454s 1445-1430s 1380s 1364m 1350w 1	1332m 1276w 1250m 1236s 8	1470s 1458s 1430s 1386s 1368s 1358m 1	1350m 1334m 1276—1260s 1224s 8'	1468s 1452s 1406s 1384m 1368m 1350s 1	1326s 1256s 1212s 89	1470—1460s 1446m 1416s 1386m 1360m 1	1344s 1235s 7	1470-1455s 1420m 1382m 1365m 1354s 1	1264s 1232s 9	Refs.: see Table 1.
	с Ч	stretching	1612s 1500m		1620s 1600s	1814s 1500m		1618s 1598s	1508m	16181590s	1506m	1585s 1555s	1508w	1630 - 1615s	1585s 1500m	1628s 1608s	1528s 1500m	1628s 1606s	1514s 1500m	1620s 1555s	1508s	
	0	stretching	1672s $1644s$	2001	1695s	1674c 1644c		1698s		1694s		1694s		1682s		1702s 1672s		1666s		1684s		
		Ref.	69		ъ	<u>ب</u>	2	p,		p,		Ð		e		e		e		e		
	ſ	Ŗ	Η		I	ε	5	ū		ប		ü		ū		Ũ		ü		ū		
(111)	(111)	Ŗ	MeO		MeO	MaO	Optit	НО		MeO		MeS		MeO		MeO		MeO		MeO		
	Compound	R	НО	;	MeO	но	110	MeO		MeO		MeS		NH.	•	NHAc		PhCH ₃ ·NH		Pyrrol-	idin-1-yl	
		No.	38		39	9	P#	41		42		43		44		45		46		47		

not have such a profound effect as that shown in the corresponding derivatives of griseofulvin and isogriseofulvin. Introduction of either a second alkyl or a second halogen group at carbon 3' (e.g., II; R = H, R' = Cl, R'' = R''' = Me) prevents enolisation in ring c and permits β -interaction between the 3- and the 2'-ketone groups; this effect is indicated by the appearance of carbonyl bands at 1742-1732 and 1702-1685 cm.⁻¹ (see Tables 2 and 3).

3'-Acetamidogriseofulvic acid (II; R = R'' = H, R' = Cl, R'' = NHAc), 3'-benzamidogriseofulvic acid (II; R = R''' = H, R' = Cl, R'' = NHBz), and 3'-benzamidodechlorogriseofulvic acid (II; R = R' = R''' = H, R'' = NHBz) in bromoform solution all show a nitrogen-hydrogen stretching band at 3350 cm.⁻¹ and strong secondary amide bands at 1620 and 1538-1534 cm.⁻¹. In the 3'-acetamido- and the 3'-benzamidoderivative of griseofulvin and the 3'-benzamido-derivative of isogriseofulvin,⁴ however, the nitrogen-hydrogen band appears at 3350 cm.⁻¹, but the amide bands are displaced to 1700-1680 and 1496-1486 cm.⁻¹. This difference in behaviour may be attributed to enolisation in ring c of the griseofulvic acid derivatives; the enolic hydroxyl forms a hydrogen bond on to the carbonyl of the 3'-amide group and lowers the amide-carbonyl frequency to about 1620 cm.⁻¹. In the griseofulvin and isogriseofulvin derivatives, hydrogen bonding cannot occur, and the amide-carbonyl group therefore absorbs at a higher frequency, namely, 1700–1680 cm.⁻¹.

When examined in the solid state as Nujol mulls, griseofulvic acid and its derivatives unexpectedly gave three types of spectrum. The first type, which was given by griseofulvic acid and its 4,6-dialkoxy-analogues and by 3'-alkyl derivatives of griseofulvic acid, is characterised by a hydroxyl band at about 3300 cm^{-1} and by carbonyl bands between 1680 and 1650 cm.⁻¹. The 2'-ketone probably enolises, and the hydrogen atom of the resulting 2'-hydroxyl group bonds on to the 3-ketone, which then absorbs at 1680-1670 cm.⁻¹. The carbonyl stretching band for the 4'-ketone is displaced to about 1650 cm.⁻¹ by conjugate chelation with the 2'-ethylenic linkage.

Spectra of the second type are shown by compounds, such as 3',3'-dialkyl- and 3',3'-dihalogeno-griseofulvic acids, in which ring c is unable to enolise; the carbonyl bands, thanks to β -interaction between the 3- and the 2'-ketone group, appear at 1735–1726 and 1702-1680 cm.⁻¹. In the third type, of which 5-chloro- and 5-bromo-griseofulvic acid (II; R = R' = Hal, R'' = R''' = H) and a polymorphic form of 3'-methylgriseofulvic acid ⁵ are examples, the 3-ketone absorbs normally at about 1715 cm.⁻¹, but the absorption for the unenolised ketone in ring c (probably the 2'-ketone) is displaced to 1600-1550 cm.⁻¹ by conjugation and very strong hydrogen-bonding on to the hydroxyl group of the enolised 4'-ketone; strong hydrogen-bonding, probably dimerisation, is confirmed by the appearance of a displaced hydroxyl band at 2600 cm.⁻¹. Compounds giving the third type of spectrum behave normally in bromoform solution. The two polymorphic forms of 3'-methylgriseofulvic acid, which as Nujol mulls give type 1 and type 3 spectra, yield identical spectra when examined as solutions in bromoform or tetrahydrofuran.

The infrared spectrum of a pressed potassium chloride disc of griseofulvic acid frequently differs from that of a Nujol mull in showing a sharp band of variable intensity at about 1700 cm.^{-1,6} The band appears more readily in damp specimens of griseofulvic acid and is prominent in the spectra of samples that have been ground with potassium chloride for several minutes. Since we were unable to induce the band in a Nujol mull spectrum of griseofulvic acid, we believe that it is an artifact caused by partial formation of the potassium salt when griseofulvic acid is pressed with potassium chloride. A specimen of the sodium salt of griseofulvic acid prepared by titrating griseofulvic acid with sodium hydroxide, evaporating, and drying, absorbed at 1700 cm.⁻¹. This observation draws attention to a possible hazard in studying halide disc spectra.

- ⁴ Arkley, Gregory, and Walker, J., 1963, 1603.
 ⁵ Gregory, Holton, Robinson, and Walker, J., 1962, 1269.
 ⁶ Day, Nabney, and Scott, J., 1961, 4067.

The 3-ketones of the 2',4'-bisethylene ketals of griseofulvic acid (III; R = R' =MeO, R'' = Cl, dechlorogriseofulvic acid (III; R = R' = MeO, R'' = H), and the 4,6-dimethylthio-analogue of griseofulvic acid (III; R = R' = MeS, R'' = Cl) in bromoform solution absorb at 1695—1693 cm.⁻¹ (see Table 4). The 3-ketone in the 4-hydroxyl analogue of the bisethylene ketal (III; R = HO, R' = MeO, R'' = CI) of griseofulvic acid, however, thanks to intramolecular hydrogen-bonding 7 on to the 4-hydroxyl group, absorbs at 1680—1672 cm.⁻¹; the 3-ketone group in the isomeric 6-hydroxyl analogue (III; R = MeO, R' = HO, R'' = Cl) cannot form a hydrogen bond on to the 6-hydroxyl group and accordingly absorbs at 1700 cm.⁻¹. The 4-amino- and 4-benzylamino-analogues behave similarly to the 4-hydroxyl analogue.

C=C Stretching Bands.—The bands at about 1615—1590 cm.⁻¹ and at 1508 cm.⁻¹ in the infrared spectrum of griseofulvic acid are C=C skeletal in-plane vibrations of aromatic ring A and appear in the spectra of all griseofulvic acid analogues (Tables 1-4) that have a 5-hydrogen atom. The 1615–1590 cm.⁻¹ bands resemble those of griseofulvin and isogriseofulvin in being considerably stronger than the corresponding carbonyl bands; they are only slightly affected by the introduction of either a 3'-alkyl or a 3'-halogen group or by the formation of a 2', 4'-bisethylene ketal.

TABLE 5.

	Abs	sorption bands fo 4'-substituted and	or 2'-sub alogues	stituted analogues of isogriseofulvin ((of griseofulvin and CHBr ₃ solution).
		Compound		Absorpti	on bands (cm. ⁻¹)
No.		R	Ref.	C=O stretching	C=C stretching
48	\mathbf{IV}	н	h	1708 1695 1675	1615-1595 1508
49	v	Н	h	1696 1684	1616-1594 1506
50	IV	Cl	h	1706 1684	1614 1592 1506
51	v	Cl	h	1705 1684	1614 1590 1506
52	\mathbf{IV}	MeO	h	1705 1654	1615-1591 1508
53	v	MeO	h	1698 1660	1614-1598 1510
54	\mathbf{IV}	MeS	h	1706 1648	1614 1590 1570 1508
55	v	MeS	h	1695 1654	1614 1590 1572 1508
56	\mathbf{IV}	Pyrrolidin-1-yl	е	1705 1610	1610 - 1590 1552 1508
57	v	Pyrrolidin-1-yl	e	1693 1620	1620-1595 1565-1555 1508
58	v	Piperidino	е	1692 1620	$1620 - 1595 \ 1552 \ 1508$

Morpholino The following analogues were also examined:

59

v

(Ref. i) (IV: $R = NH_2$ or $NH \cdot CH_2 \cdot CH_2 \cdot NEt_2$); (V: $R = NH_2$ or $NH \cdot CH_2 \cdot CH_2 \cdot NEt_2$). (Ref. e) (IV: R = NHMe or NHEt); (V: R = NHMe, NEt_2 , $NHBu^n$, or $NMeCH_2CH_2CH_2$. Refs.: (h) Ref. 1. (e) See Table 1. (i) Stephenson, Walker, Warburton, and Webb, J., 1962, 1282.

1696 1616

1616 1562 1508

е

Replacement of the 6-methoxyl group of griseofulvic acid by hydroxyl does not affect the frequency, but lowers the intensity of the 1615-1590 cm⁻¹ C=C bands (Table 1); replacement of the 4-methoxyl group by hydroxyl not only weakens the 1615–1590 cm.⁻¹ bands, but also displaces them to 1614-1600 cm.⁻¹. This weakening of the 1615-1590 cm.⁻¹ bands accords with our suggestion 1 that their exceptionally high intensity in griseofulvin and its 4,6-dialkoxyl analogues is associated with the keto-enol ether system.

Greater changes occur in the 1600–1500 cm.⁻¹ region when the 4- and the 6-methoxyl group of griseofulvic acid and of its bisethylene ketal are replaced by alkylthio- or pyrrolidin-1-yl groups (Tables 1 and 4); a strong band appears near 1550 cm.⁻¹. Bromoform solution spectra of griseofulvin and isogriseofulvin analogues (see ref. 1 and Table 5), in which the 2'- or 4'-methoxyl group, respectively, are replaced by alkylthio-, piperidino-, pyrrolidin-1-yl, or morpholino-groups also show bands between 1572 and 1552 cm.⁻¹. Since the 4'- and the 2'-ketone group in these analogues absorb at much lower frequencies $(1654-1610 \text{ cm}^{-1})$ than those in griseofulvin and isogriseofulvin $(1660-1654 \text{ cm}^{-1})$, we

⁷ Boothroyd, Napier, and Somerfield, Biochem. J., 1961, 80, 34.

believe that the 1572-1552 cm.⁻¹ bands in these spectra are associated with C=C stretching of the 2'- and 3'-ethylenic linkages. However, when the 2'-pyrrolidin-1-yl analogue of griseofulvin and the 4'-pyrrolidin-1-yl analogue of isogriseofulvin were examined in different solvents,^{1,8} we were surprised to find that the 1705-1693 cm.⁻¹ carbonyl bands and the 1565-1552 cm.⁻¹ C=C stretching bands were both sensitive to solvent change; this contrasted with our observations on griseofulvin and isogriseofulvin.¹

The 1550 cm.⁻¹ bands in the spectra of the 4-pyrrolidin-1-yl and the 4,6-dialkylthioanalogues of griseofulvic acid and of its bisethylene ketal (Tables 1 and 4) probably represent C=C stretching of the aromatic ring, but are otherwise similar in origin to the 1572— 1552 cm.⁻¹ bands of the griseofulvin analogues. The unusual position and the high intensity of these C=C bands appear to be characteristic of a basic substituent conjugated with a ketone.

The aromatic band at 1508 cm.⁻¹, of medium intensity, in the spectrum of griseofulvic acid disappears if either a 5-halogen or a 5-nitro-group is introduced (see Table 3). Introduction of a 4-hydroxy-, 4-amino-, 4-acetamido-, or 4-benzylamine-group, but not of a 4-methylthio- or a 4-pyrrolidin-l-yl group, displaces the 1508 cm.⁻¹ band to about 1500 cm.⁻¹ (see Table 4).

Carbon-Hydrogen Deformation Bands.-The carbon-hydrogen deformation bands that appear between 1480 and 1350 cm.⁻¹ in the spectra of griseofulvic acid analogues (see Table 1), in general, accord with those that we reported for griseofulvin. The bands for the 2'-oxo-4'-enol and 4'-oxo-2'-enol ether systems are absent, but those for the 4- and 6-alkoxyl groups can be identified. The 4,6-dimethylthio-analogues do not show the 1470-1462 cm.⁻¹ band that we assigned to asymmetrical CH₃ bending of the methoxygroup, but absorb instead at 1454-1452 cm.⁻¹. Similar absorption is shown by the 4,6-dimethylthio-analogues of griseofulvin and isogriseofulvin, and we have therefore assigned this band to asymmetrical CH_a bending of the methylthio-group; the corresponding symmetrical band probably appears at about 1430 cm.⁻¹.

Carbon-Oxygen Stretching Bands.-Griseofulvic acid, its sodium salt, and its 4,6-dialkoxyl analogues, when examined as Nujol mulls, show strong carbon-oxygen stretching bands at about 1358, 1225, 1145, and 1102 cm.⁻¹. These bands are somewhat similar to those shown by griseofulvin and 4'-oxo-2'-enol ethers; isogriseofulvin and 2'-oxo-4'enol ethers can be distinguished by additional bands at 1388 and 1175 cm.⁻¹ of medium intensity.

The 2',4'-bisethylene ketals of griseofulvic acid and of its 4,6-dialkoxyl analogues, when examined as Nujol mulls, show besides the alkoxyl C-O stretching bands at about 1358, 1225, 1135, and 1102 cm.⁻¹, additional adsorption at about 1135 and 1070 cm.⁻¹ for the ketal linkages. The C-O bands for methoxyl groups are readily distinguished from those for the ketals by comparing the carbon disulphide solution spectrum of the 2',4'-bisethylene ketal of griseofulvic acid (III: R = R' = MeO, R'' = Cl) with that of its 4,6-dimethylthio-analogue (III; R = R' = MeS, R'' = Cl). The bands at about 1354, 1220, 1138, and 1110 cm.⁻¹ are associated with the methoxyl groups and those at 1120–1110 and 1080-1078 cm⁻¹ with the ethylene ketals. This agrees with our observation that the C-O stretching bands for the 3-ethylene ketal of cholestan-3-one appear at 1136, 1108, 1094, and 1074 cm.⁻¹, compared with 1190-1175, 1155-1132, 1110-1100, and 1053-1050 cm.⁻¹ for 3,3-dialkoxy-steroids; ⁹ the 1108 and 1094 cm.⁻¹ bands for the 3-ethylene ketal are considerably stronger than the 1136 and 1074 cm.⁻¹ bands, whereas the 1190-1175 and 1155-1132 bands for 3,3-dialkoxy-steroids are weaker than those at 1110—1100 and 1053—1050 cm.⁻¹.

The absorption bands shown by griseofulvic acid and its analogues in the 1000-650 cm.⁻¹ region are consistent with those reported in our study of griseofulvin and isogriseofulvin.1

⁸ Bellamy and Williams, Proc. Roy. Soc., 1960, A, 255, 22.
 ⁹ Bergmann and Pinchas, Rec. Trav. chim., 1952, 71, 1611; Page, J., 1955, 2017

[1963]

Experimental.—The griseofulvic acid analogues were examined over the 4000—650 cm.⁻¹ spectral region as Nujol mulls and, whenever the compounds were sufficiently soluble, as 1.0% w/v solutions in bromoform, stabilised with 0.05% of diphenylamine, in 0.8 mm. cells, by means of a Perkin-Elmer Corporation model 21, double-beam infrared spectrophotometer fitted with a sodium chloride prism. The more soluble 2',4'-bisethylene ketals were also studied as 1.0% w/v solutions in carbon disulphide in 0.8 mm. cells, but the less soluble griseofulvic acids were examined as saturated bromoform solutions (<0.1% w/v) in 0.8 mm. cells in a spectrophotometer fitted with ordinate scale expansion; special care was taken to remove suspended material. Several compounds were also studied as either potassium chloride discs or 2.5% w/v tetrahydrofuran solutions in 0.1 mm. cells.

All the compounds were prepared in these laboratories and had the physical properties described in the references listed in the Tables.

The spectra of a selection of these compounds have been allotted nos. 10,600—10,615 in the D.M.S. Scheme (Butterworths Scientific Publications, London).

GLAXO RESEARCH LTD., GREENFORD, MIDDLESEX.

[Received, October 9th, 1962.]
