339. Griseofulvin Analogues. Part VIII.* Infrared Absorption of Griseofulvic Acid and Related Compounds.

By J. E. Page and Susan E. Staniforth.

The infrared absorptions of 47 analogues of griseofulvic and dechlorogriseofulvic acid and of their $2^{\prime}, 4^{\prime}$-bisethylene ketals and of 22 analogues of griseofulvin and isogriseofulvin are described. The effects of carbonyl, alkyl, alkoxy-, alkylthio-, halogen, and basic substituents are discussed.

We have discussed previously ${ }^{1}$ the infrared absorption spectra of simple analogues of griseofulvin and isogriseofulvin and have suggested structural assignments for their principal absorption bands. Our survey has now been extended to solid-state and solution spectra of griseofulvic acid ($\mathrm{I} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{MeO}, \mathrm{R}^{\prime \prime}=\mathrm{Cl}$) and of 46 related compounds. The solid state (Nujol mull or potassium chloride disc) spectra of griseofulvic acid and its simple analogues differ considerably from those of the corresponding bromoform solutions and are also frequently more complex than those for related griseofulvin and isogriseofulvin analogues. The differences are in general attributed to intermolecular hydrogen-bonding effects.

(I)

(II)

(V)

Carbonyl Stretching Bands.-Griseofulvic acid and its simpler 4,6-dialkoxyl analogues, which are much less soluble in bromoform and in the normal infrared solvents than are griseofulvin and its analogues, were examined as saturated solutions in bromoform on an infrared spectrophotometer fitted with ordinate scale expansion (see Table 1). The solution spectra show a relatively weak carbonyl stretching band at $1744-1710 \mathrm{~cm} . .^{-1}$ and a more intense carbonyl band at $1694-1690 \mathrm{~cm} .^{-1}$; additional absorption appears at 1676 $1660 \mathrm{~cm} .^{-1}$. The 3 -ketone probably absorbs at $1694-1690 \mathrm{~cm} .^{-1}$, and either the 2^{\prime} - or 4^{\prime}-ketone at $1676-1660 \mathrm{~cm} .^{-1}$ as a result of conjugate chelation with the enolised 4^{\prime} - or 2^{\prime}-ketone, respectively. ${ }^{2}$ The weak $1744-1740 \mathrm{~cm} .^{-1}$ band, which is more prominent in dilute solution spectra, is probably caused by direct interaction between the 3 -ketone and unenolised 2^{\prime}-ketone and may have an origin similar to that of the displaced carbonyl stretching bands shown by 21 -acetoxy-20-oxo-steroids. ${ }^{3}$
3^{\prime}-Alkylation of griseofulvic acid (e.g., II; $\mathrm{R}=\mathrm{R}^{\prime \prime \prime}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Cl}, \mathrm{R}^{\prime \prime}=\mathrm{Me}$) leads to increased solubility in bromoform and displaces the carbonyl bands to 1718-1698 and $1668-1655 \mathrm{~cm} .^{-1}$ (see Table 2); the former band is associated with the 3 -ketone, which cannot enolise, and the latter band with an $\alpha \beta$-unsaturated ketone in enolised ring c . A weak band for bonded hydroxyl appears at $3450-3280 \mathrm{~cm} .^{-1}$. 3^{\prime}-Halogenation of griseofulvic acid affects the carbonyl frequency of the $\alpha \beta$-unsaturated ketone, but does

[^0]Table 1.
Absorption bands (cm. ${ }^{-1}$) for 4- and 6-alkoxy-analogues of griseofulvic acid and of dechlorogriseofulvic acid (CHBr_{3} solution).

Compound (I)				Absorption bands (cm. ${ }^{-1}$)				
No.	R	R^{\prime}	$\mathrm{R}^{\prime \prime}$	Ref.	stretching	stretching	1490-1210	1090-730
1	HO	MeO	H	a	$\begin{array}{ll} 1735 \mathrm{w} & 1695 \mathrm{~m} \\ 1676 \mathrm{~s} & 1644 \mathrm{~s} \end{array}$	1610s 1600s	*	*
2	MeO	MeO	H	a	$\begin{aligned} & 1742 \mathrm{~m} 1690 \mathrm{~s} \\ & 1660 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1616 \mathrm{~s} 1592 \mathrm{~s} \\ & 1502 \mathrm{~m} \end{aligned}$	1466-1460s 1435s 1384w 1368m 1350s 1242s 1220s	1068m 1000s 968w 842 m 820 m
3	HO	MeO	Cl	b	$\begin{aligned} & 1745 \mathrm{~m} 1685 \mathrm{~s} \\ & 1665 \mathrm{~s} \end{aligned}$	1640 s 1615 s	* *	*
4	MeO	HO	Cl	c	1722 m 1664s	$\begin{aligned} & 1640 \mathrm{~s} 1612 \mathrm{~s} \\ & 1590 \mathrm{~s} 1538 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 1466s } 1450 \mathrm{~s} 1422-1410 \mathrm{~s} 1390-1382 \mathrm{~m} \\ & 1358 \mathrm{~s} \text { 1240s } 1218 \mathrm{~m} \end{aligned}$	1070m 1008m 972w 920 w 845 m 81
5	MeO	MeO	Cl	c	1740m 1688s	$\begin{aligned} & 1610 \mathrm{~s} 1592 \mathrm{~s} \\ & 1506 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1466-1460 \mathrm{~s} 1434 \mathrm{~m} 1402 \mathrm{~s} 1386 \mathrm{w} \text { 1348s } \\ & 1285 \mathrm{~m} 1216 \mathrm{~s} \end{aligned}$	*
6	MeO	EtO	Cl	d	1744m 1692s	$\begin{aligned} & 1614-1594 \mathrm{~s} \\ & 1508 \mathrm{~m} \end{aligned}$	*	*
7	MeO	$\mathrm{Pr}^{\mathrm{n}} \mathrm{O}$	Cl	b	1744m 1692s	$\begin{aligned} & 1614 \mathrm{~s} 1590 \mathrm{~s} \\ & 1508 \mathrm{~m} \end{aligned}$	1466-1460s 1448 s 1410 s 1384 m 1356 s 1248 s 1216 s	1006m 978w 954w 920w 888w 850w
8	MeO	$\mathrm{Pr}^{\text {r }}$	Cl	b	1744m 1692s	$\begin{aligned} & 1614 \mathrm{~s} 1590 \mathrm{~s} \\ & 1508 \mathrm{~m} \end{aligned}$	$1466 \mathrm{~s} 1448 \mathrm{~s} 1420 — 1408 \mathrm{~s} 1382 \mathrm{~m}$ 1370m 1350 m 1250m 1216 s	1000m 916w 888w 834w 800m
9	MeO	$\mathrm{Bu}^{\mathrm{n}} \mathrm{O}$	Cl	b	1744m 1692s	$\begin{aligned} & 1616 \mathrm{~s} 1590 \mathrm{~s} \\ & 1508 \mathrm{~m} \end{aligned}$	1466-1460s 1448s 1410s 1384m 1350s 1250s 1218s	1006m 954w 920w 894w 844w 800m
10	MeO	$\mathrm{C}_{18} \mathrm{H}_{83} \mathrm{O}$	Cl	b	1745m 1692s	$\begin{aligned} & 1622-1590 \mathrm{~s} \\ & 1508 \mathrm{~m} \end{aligned}$	```1214s 1466s 1448s 1410s 1382m 1350s 1248m```	1006m 918w 888w 848w 800m 78
11	MeO	$\mathrm{CH}_{2}: \mathrm{CH} \cdot \mathrm{CH}_{2} \mathrm{O}$	Cl	b	1744m 1690s	$\begin{aligned} & 1616 \mathrm{~s} 1590 \mathrm{~s} \\ & 1508 \mathrm{~m} \end{aligned}$	1468s 1448 s 1412 s 1384 m 1350s 1252 s 1218 s	1008m 980w 935w 890w 850w 800
12	MeO	$\mathrm{PhCH}_{2} \cdot \mathrm{O}$	Cl	b	1742m 1690s	$\begin{aligned} & 1616-1590 \mathrm{~s} \\ & 1506 \mathrm{~s} \end{aligned}$	1466 s 1444 s 1408s 1384 m 1350s 1340 s 1250 m 1218 s	1030w 1002s 978 m 912w 890w 845w 780w 738m
13	MeO	$\begin{aligned} & \text { Pyrrol- } \\ & \text { idin-1-yl } \end{aligned}$	Cl	e	$\begin{aligned} & 1745 \mathrm{~m} 1716 \mathrm{~m} \\ & 1676 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1612 \mathrm{~s} 1572 \mathrm{~s} \\ & 1520 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1485 \mathrm{~m} 1468-1454 \mathrm{~s} \quad 1424 \mathrm{~s} \quad 1388 \mathrm{~m} \\ & 1362-1350 \mathrm{~s} \quad 1260 \mathrm{~s} 1240 \mathrm{~s} \end{aligned}$	1068m 1006m 915w 868w 828w 798
14	EtO	EtO MeS	$\stackrel{\mathrm{Cl}}{\mathrm{Cl}}$	d	1744 m 1692s	1616s $1596 s$ $1616-1600$	1454s 1430-1420 * 1375 m (252m	1055m 1010w 976 m 962 w 850 m 81
					1648 s	1580s 1545s	1230 s	m 1010w 976 m 962 w 850 m 810

* Insufficiently soluble to give measurable bands.
Refs.: (a) Ref. 4. (b) Arkley, Attenburrow, Gregory, and Walker, $J ., 1962,1260$.
$\begin{array}{lll}\text { (d) MacMillan, } J ., 1959,1823 . & \text { (e) Gregory, Goodall, and Walker, preceding paper. } & \end{array}$
Table 2.

Table 3.
Absorption bands for 5 - and 3^{\prime}-substituted griseofulvic acid (CHBr_{3} solution).
[1963]
Griseofulvin Analogues. Part VIII.
Compound (II)

Table 4.

 1076s 1044 m 1028m 998s 948m 906w 868w
 1074s 1043 s 1000s 972 w 947 m 894m 880w $1074 \mathrm{~s} 1054 \mathrm{~m} \quad 1045 \mathrm{~m} \quad 1000 \mathrm{~s} \quad 983 \mathrm{~m} \quad 948 \mathrm{~m}$ 908 w 880 w 842 m 812 m 787 m
$1072 \mathrm{~s} 1040 \mathrm{~s} 1003 \mathrm{~s} 980 \mathrm{~m} 952 \mathrm{~m} 906 \mathrm{w} 884-$ 1074 s 1046 s 1000s 980 s 950 s 926 m 906 w
 $1074 \mathrm{~s} 1044 \mathrm{~s} 1002 \mathrm{~s} 954-944 \mathrm{~m} 906 \mathrm{w} 892 \mathrm{~m}$ 1072 s 1042 s 1002 s 970 m 958 m 946 m 905 w 1078 s 1040 m 1004s 950 m 904 w 880 w 842 w
1074s 1044m 1008s 975 w 962 w 945 m 912 905m 876w 842w 824m 786-776m

Refs.: see Table 1.
not have such a profound effect as that shown in the corresponding derivatives of griseofulvin and isogriseofulvin. Introduction of either a second alkyl or a second halogen group at carbon 3^{\prime} (e.g., II; R $=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Cl}, \mathrm{R}^{\prime \prime}=\mathrm{R}^{\prime \prime \prime}=\mathrm{Me}$) prevents enolisation in ring C and permits β-interaction between the 3 - and the 2^{\prime}-ketone groups; this effect is indicated by the appearance of carbonyl bands at $1742-1732$ and $1702-1685 \mathrm{~cm} .^{-1}$ (see Tables 2 and 3).
3^{\prime}-Acetamidogriseofulvic acid (II; $\mathrm{R}=\mathrm{R}^{\prime \prime \prime}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Cl}, \mathrm{R}^{\prime \prime}=\mathrm{NHAc}$), 3^{\prime}-benzamidogriseofulvic acid (II; $\mathrm{R}=\mathrm{R}^{\prime \prime \prime}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Cl}, \mathrm{R}^{\prime \prime}=\mathrm{NHBz}$), and 3^{\prime}-benzamidodechlorogriseofulvic acid (II; $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime \prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{NHBz}$) in bromoform solution all show a nitrogen-hydrogen stretching band at $3350 \mathrm{~cm} .^{-1}$ and strong secondary amide bands at 1620 and $1538-1534 \mathrm{~cm}^{-1}$. In the 3^{\prime}-acetamido- and the 3^{\prime}-benzamidoderivative of griseofulvin and the 3^{\prime}-benzamido-derivative of isogriseofulvin, ${ }^{4}$ however, the nitrogen-hydrogen band appears at $3350 \mathrm{~cm} .^{-1}$, but the amide bands are displaced to $1700-1680$ and $1496-1486 \mathrm{~cm} .^{-1}$. This difference in behaviour may be attributed to enolisation in ring c of the griseofulvic acid derivatives; the enolic hydroxyl forms a hydrogen bond on to the carbonyl of the 3^{\prime}-amide group and lowers the amide-carbonyl frequency to about $1620 \mathrm{~cm} .^{-1}$. In the griseofulvin and isogriseofulvin derivatives, hydrogen bonding cannot occur, and the amide-carbonyl group therefore absorbs at a higher frequency, namely, $1700-1680 \mathrm{~cm} .^{-1}$.

When examined in the solid state as Nujol mulls, griseofulvic acid and its derivatives unexpectedly gave three types of spectrum. The first type, which was given by griseofulvic acid and its 4,6 -dialkoxy-analogues and by 3^{\prime}-alkyl derivatives of griseofulvic acid, is characterised by a hydroxyl band at about $3300 \mathrm{~cm} .^{-1}$ and by carbonyl bands between 1680 and $1650 \mathrm{~cm} .^{-1}$. The 2^{\prime}-ketone probably enolises, and the hydrogen atom of the resulting 2^{\prime}-hydroxyl group bonds on to the 3 -ketone, which then absorbs at 1680 $1670 \mathrm{~cm} .^{-1}$. The carbonyl stretching band for the 4^{\prime}-ketone is displaced to about $1650 \mathrm{~cm} .^{-1}$ by conjugate chelation with the 2^{\prime}-ethylenic linkage.

Spectra of the second type are shown by compounds, such as $3^{\prime}, 3^{\prime}$-dialkyl- and $3^{\prime}, 3^{\prime}$-di-halogeno-griseofulvic acids, in which ring c is unable to enolise; the carbonyl bands, thanks to β-interaction between the 3 - and the 2^{\prime}-ketone group, appear at $1735-1726$ and $1702-1680 \mathrm{~cm} .^{-1}$. In the third type, of which 5 -chloro- and 5 -bromo-griseofulvic acid (II; R $=\mathrm{R}^{\prime}=\mathrm{Hal}, \mathrm{R}^{\prime \prime}=\mathrm{R}^{\prime \prime \prime}=\mathrm{H}$) and a polymorphic form of 3^{\prime}-methylgriseofulvic acid ${ }^{5}$ are examples, the 3 -ketone absorbs normally at about $1715 \mathrm{~cm} .^{-1}$, but the absorption for the unenolised ketone in ring c (probably the 2^{\prime}-ketone) is displaced to $1600-1550 \mathrm{~cm} .^{-1}$ by conjugation and very strong hydrogen-bonding on to the hydroxyl group of the enolised 4^{\prime}-ketone; strong hydrogen-bonding, probably dimerisation, is confirmed by the appearance of a displaced hydroxyl band at $2600 \mathrm{~cm} .^{-1}$. Compounds giving the third type of spectrum behave normally in bromoform solution. The two polymorphic forms of $\mathbf{3}^{\prime}$-methylgriseofulvic acid, which as Nujol mulls give type 1 and type 3 spectra, yield identical spectra when examined as solutions in bromoform or tetrahydrofuran.

The infrared spectrum of a pressed potassium chloride disc of griseofulvic acid frequently differs from that of a Nujol mull in showing a sharp band of variable intensity at about $1700 \mathrm{~cm} .^{-1} .^{6}$ The band appears more readily in damp specimens of griseofulvic acid and is prominent in the spectra of samples that have been ground with potassium chloride for several minutes. Since we were unable to induce the band in a Nujol mull spectrum of griseofulvic acid, we believe that it is an artifact caused by partial formation of the potassium salt when griseofulvic acid is pressed with potassium chloride. A specimen of the sodium salt of griseofulvic acid prepared by titrating griseofulvic acid with sodium hydroxide, evaporating, and drying, absorbed at $1700 \mathrm{~cm} .^{-1}$. This observation draws attention to a possible hazard in studying halide disc spectra.

[^1]The 3 -ketones of the $2^{\prime}, 4^{\prime}$-bisethylene ketals of griseofulvic acid (III; $\mathrm{R}=\mathrm{R}^{\prime}=$ $\mathrm{MeO}, \mathrm{R}^{\prime \prime}=\mathrm{Cl}$), dechlorogriseofulvic acid (III; $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{MeO}, \mathrm{R}^{\prime \prime}=\mathrm{H}$), and the 4,6-dimethylthio-analogue of griseofulvic acid (III; $R=R^{\prime}=\mathrm{MeS}, \mathrm{R}^{\prime \prime}=\mathrm{Cl}$) in bromoform solution absorb at $1695-1693 \mathrm{~cm} .^{-1}$ (see Table 4). The 3 -ketone in the 4 -hydroxyl analogue of the bisethylene ketal (III; $\mathrm{R}=\mathrm{HO}, \mathrm{R}^{\prime}=\mathrm{MeO}, \mathrm{R}^{\prime \prime}=\mathrm{Cl}$) of griseofulvic acid, however, thanks to intramolecular hydrogen-bonding ${ }^{7}$ on to the 4 -hydroxyl group, absorbs at $1680-1672 \mathrm{~cm} .^{-1}$; the 3 -ketone group in the isomeric 6 -hydroxyl analogue (III; $\mathrm{R}=\mathrm{MeO}, \mathrm{R}^{\prime}=\mathrm{HO}, \mathrm{R}^{\prime \prime}=\mathrm{Cl}$) cannot form a hydrogen bond on to the 6 -hydroxyl group and accordingly absorbs at $1700 \mathrm{~cm} .^{-1}$. The 4-amino- and 4-benzylamino-analogues behave similarly to the 4 -hydroxyl analogue.
$\mathrm{C}=\mathrm{C}$ Stretching Bands.-The bands at about $1615-1590 \mathrm{~cm} .^{-1}$ and at $1508 \mathrm{~cm} .^{-1}$ in the infrared spectrum of griseofulvic acid are C=C skeletal in-plane vibrations of aromatic ring A and appear in the spectra of all griseofulvic acid analogues (Tables 1-4) that have a 5 -hydrogen atom. The $1615-1590 \mathrm{~cm}^{-1}$ bands resemble those of griseofulvin and isogriseofulvin in being considerably stronger than the corresponding carbonyl bands; they are only slightly affected by the introduction of either a 3^{\prime}-alkyl or a 3^{\prime}-halogen group or by the formation of a $2^{\prime}, 4^{\prime}$-bisethylene ketal.

Table 5.
Absorption bands for 2^{\prime}-substituted analogues of griseofulvin and 4^{\prime}-substituted analogues of isogriseofulvin (CHBr_{3} solution).

Compound

No.		R
48	IV	H
49	V	H
50	IV	Cl
51	V	Cl
52	IV	MeO
53	V	MeO
54	IV	MeS
55	V	MeS
56	IV	Pyrrolidin-1-yl
57	V	Pyrrolidin-1-yl
58	V	Piperidino
59	V	Morpholino

Absorption bands ($\mathrm{cm} .^{-1}$)

Ref.	$\mathrm{C}=\mathrm{O}$ stretching	$\mathrm{C}=\mathrm{C}$ stretching
h	170816951675	1615-1595 1508
h	16961684	1616-1594 1506
h	17061684	161415921506
h	17051684	161415901506
h	17051654	1615-1591 1508
h	16981660	1614-1598 1510
h	17061648	$\begin{array}{lllll}1614 & 1590 & 1570 & 1508\end{array}$
h	16951654	1614159015721508
e	17051610	1610-1590 15521508
e	16931620	1620-1595 1565-1555 1508
e	16921620	1620-1595 15521508
e	16961616	161615621508

The following analogues were also examined:

$$
\text { (Ref. i) (IV: } \left.\mathrm{R}=\mathrm{NH}_{2} \text { or } \mathrm{NH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{NEt}_{2}\right) \text {; (V: } \mathrm{R}=\mathrm{NH}_{2} \text { or } \mathrm{NH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{NEt}_{2} \text {). }
$$

(Ref. e) (IV: $\mathrm{R}=\mathrm{NHMe}$ or NHEt$)$; ($\mathrm{V}: \mathrm{R}=\mathrm{NHMe}^{2} \mathrm{NEt}_{2}, \mathrm{NHBu}^{\text {n }}$, or $\mathrm{NMe}^{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}$. NEt_{2}).
Refs.: (h) Ref. 1. (e) See Table 1. (i) Stephenson, Walker, Warburton, and Webb, J., 1962, 1282.
Replacement of the 6-methoxyl group of griseofulvic acid by hydroxyl does not affect the frequency, but lowers the intensity of the $1615-1590 \mathrm{~cm}^{-1} \mathrm{C}=\mathrm{C}$ bands (Table 1); replacement of the 4-methoxyl group by hydroxyl not only weakens the $1615-1590 \mathrm{~cm}^{-1}$ bands, but also displaces them to $1614-1600 \mathrm{~cm} .^{-1}$. This weakening of the 1615 $1590 \mathrm{~cm} .^{-1}$ bands accords with our suggestion ${ }^{1}$ that their exceptionally high intensity in griseofulvin and its 4,6-dialkoxyl analogues is associated with the keto-enol ether system.

Greater changes occur in the $1600-1500 \mathrm{~cm} .^{-1}$ region when the 4 - and the 6 -methoxyl group of griseofulvic acid and of its bisethylene ketal are replaced by alkylthio- or pyrrolidin-1-yl groups (Tables 1 and 4); a strong band appears near $1550 \mathrm{~cm} .^{-1}$. Bromoform solution spectra of griseofulvin and isogriseofulvin analogues (see ref. 1 and Table 5), in which the 2^{\prime} - or 4^{\prime}-methoxyl group, respectively, are replaced by alkylthio-, piperidino-, pyrrolidin-1-yl, or morpholino-groups also show bands between 1572 and $1552 \mathrm{~cm} .^{-1}$. Since the 4^{\prime} - and the 2^{\prime}-ketone group in these analogues absorb at much lower frequencies ($1654-1610 \mathrm{~cm} .^{-1}$) than those in griseofulvin and isogriseofulvin ($1660-1654 \mathrm{~cm} .^{-1}$), we
${ }^{7}$ Boothroyd, Napier, and Somerfield, Biochem. J., 1961, 80, 34.
believe that the $1572-1552 \mathrm{~cm} .^{-1}$ bands in these spectra are associated with $\mathrm{C}=\mathrm{C}$ stretching of the 2^{\prime} - and 3^{\prime}-ethylenic linkages. However, when the 2^{\prime}-pyrrolidin-1-yl analogue of griseofulvin and the 4^{\prime}-pyrrolidin-1-yl analogue of isogriseofulvin were examined in different solvents, ${ }^{1,8}$ we were surprised to find that the $1705-1693 \mathrm{~cm} .{ }^{-1}$ carbonyl bands and the 1565-1552 cm. ${ }^{-1} \mathrm{C}=\mathrm{C}$ stretching bands were both sensitive to solvent change; this contrasted with our observations on griseofulvin and isogriseofulvin. ${ }^{1}$

The $1550 \mathrm{~cm} .^{-1}$ bands in the spectra of the 4 -pyrrolidin-1-yl and the 4,6-dialkylthioanalogues of griseofulvic acid and of its bisethylene ketal (Tables 1 and 4) probably represent $\mathrm{C}=\mathrm{C}$ stretching of the aromatic ring, but are otherwise similar in origin to the 1572 $1552 \mathrm{~cm} .^{-1}$ bands of the griseofulvin analogues. The unusual position and the high intensity of these $\mathrm{C}=\mathrm{C}$ bands appear to be characteristic of a basic substituent conjugated with a ketone.

The aromatic band at $1508 \mathrm{~cm} .^{-1}$, of medium intensity, in the spectrum of griseofulvic acid disappears if either a 5 -halogen or a 5 -nitro-group is introduced (see Table 3). Introduction of a 4-hydroxy-, 4-amino-, 4-acetamido-, or 4-benzylamine-group, but not of a 4-methylthio- or a 4-pyrrolidin-1-yl group, displaces the $1508 \mathrm{~cm} .^{-1}$ band to about $1500 \mathrm{~cm} .^{-1}$ (see Table 4).

Carbon-Hydrogen Deformation Bands.-The carbon-hydrogen deformation bands that appear between 1480 and $1350 \mathrm{~cm} .^{-1}$ in the spectra of griseofulvic acid analogues (see Table 1), in general, accord with those that we reported for griseofulvin. The bands for the 2^{\prime}-oxo- 4^{\prime}-enol and 4^{\prime}-oxo- 2^{\prime}-enol ether systems are absent, but those for the 4 - and 6 -alkoxyl groups can be identified. The 4,6 -dimethylthio-analogues do not show the $1470-1462 \mathrm{~cm} .^{-1}$ band that we assigned to asymmetrical CH_{3} bending of the methoxygroup, but absorb instead at $1454-1452 \mathrm{~cm}^{-1}$. Similar absorption is shown by the 4,6 -dimethylthio-analogues of griseofulvin and isogriseofulvin, and we have therefore assigned this band to asymmetrical CH_{3} bending of the methylthio-group; the corresponding symmetrical band probably appears at about $1430 \mathrm{~cm} .^{-1}$.

Carbon-Oxygen Stretching Bands.-Griseofulvic acid, its sodium salt, and its 4,6-dialkoxyl analogues, when examined as Nujol mulls, show strong carbon-oxygen stretching bands at about 1358, 1225, 1145, and $1102 \mathrm{~cm} .^{-1}$. These bands are somewhat similar to those shown by griseofulvin and 4^{\prime}-oxo- 2^{\prime}-enol ethers; isogriseofulvin and 2^{\prime}-oxo- $\mathbf{4}^{\prime}$ enol ethers can be distinguished by additional bands at 1388 and $1175 \mathrm{~cm} .^{-1}$ of medium intensity.

The $2^{\prime}, 4^{\prime}$-bisethylene ketals of griseofulvic acid and of its 4,6 -dialkoxyl analogues, when examined as Nujol mulls, show besides the alkoxyl C-O stretching bands at about $1358,1225,1135$, and $1102 \mathrm{~cm} .^{-1}$, additional adsorption at about 1135 and $1070 \mathrm{~cm} .^{-1}$ for the ketal linkages. The $\mathrm{C}-\mathrm{O}$ bands for methoxyl groups are readily distinguished from those for the ketals by comparing the carbon disulphide solution spectrum of the $2^{\prime}, 4^{\prime}$-bisethylene ketal of griseofulvic acid (III; $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{MeO}, \mathrm{R}^{\prime \prime}=\mathrm{Cl}$) with that of its 4,6-di-methylthio-analogue (III; $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{MeS}, \mathrm{R}^{\prime \prime}=\mathrm{Cl}$). The bands at about 1354, 1220, 1138 , and $1110 \mathrm{~cm} .^{-1}$ are associated with the methoxyl groups and those at $1120-1110$ and $1080-1078 \mathrm{~cm} .^{-1}$ with the ethylene ketals. This agrees with our observation that the $\mathrm{C}-\mathrm{O}$ stretching bands for the 3 -ethylene ketal of cholestan-3-one appear at 1136, 1108, 1094 , and $1074 \mathrm{~cm} .^{-1}$, compared with $1190-1175,1155-1132,1110-1100$, and $1053-$ $1050 \mathrm{~cm} .^{-1}$ for 3,3 -dialkoxy-steroids; ${ }^{9}$ the 1108 and $1094 \mathrm{~cm} .^{-1}$ bands for the 3 -ethylene ketal are considerably stronger than the 1136 and $1074 \mathrm{~cm} .^{-1}$ bands, whereas the 1190 1175 and 1155-1132 bands for 3,3-dialkoxy-steroids are weaker than those at $1110-1100$ and $1053-1050 \mathrm{~cm} .^{-1}$.

The absorption bands shown by griseofulvic acid and its analogues in the 1000 $650 \mathrm{~cm} .^{-1}$ region are consistent with those reported in our study of griseofulvin and isogriseofulvin. ${ }^{1}$
${ }^{8}$ Bellamy and Williams, Proc. Roy. Soc., 1960, A, 255, 22.
${ }^{9}$ Bergmann and Pinchas, Rec. Trav. chim., 1952, 71, 1611; Page, J., 1955, 2017

Experimental.-The griseofulvic acid analogues were examined over the $4000-650 \mathrm{~cm} .^{-1}$ spectral region as Nujol mulls and, whenever the compounds were sufficiently soluble, as $1.0 \% \mathrm{w} / \mathrm{v}$ solutions in bromoform, stabilised with 0.05% of diphenylamine, in 0.8 mm . cells, by means of a Perkin-Elmer Corporation model 21, double-beam infrared spectrophotometer fitted with a sodium chloride prism. The more soluble $2^{\prime}, 4^{\prime}$-bisethylene ketals were also studied as $1.0 \% \mathrm{w} / \mathrm{v}$ solutions in carbon disulphide in 0.8 mm . cells, but the less soluble griseofulvic acids were examined as saturated bromoform solutions ($<0.1 \% \mathrm{w} / \mathrm{v}$) in 0.8 mm . cells in a spectrophotometer fitted with ordinate scale expansion; special care was taken to remove suspended material. Several compounds were also studied as either potassium chloride discs or $\mathbf{2 . 5} \% \mathrm{w} / \mathrm{v}$ tetrahydrofuran solutions in 0.1 mm . cells.

All the compounds were prepared in these laboratories and had the physical properties described in the references listed in the Tables.

The spectra of a selection of these compounds have been allotted nos. $10,600-10,615$ in the D.M.S. Scheme (Butterworths Scientific Publications, London).

Glaxo Research Ltd., Greenford, Middlesex.

[^0]: * Part VII, $J ., 1963,1610$.
 ${ }^{1}$ Page and Staniforth, J., 1962, 1292.
 ${ }^{2}$ Bellamy, "The Infra-red Spectra of Complex Molecules," Methuen \& Co., Ltd., London, 1958, 2nd edn., p. 142.
 ${ }^{3}$ Jones, Humphries, and Dobriner, J. Amer. Chem. Soc., 1950, 72, 956.

[^1]: 4 Arkley, Gregory, and Walker, J., 1963, 1603.
 ${ }^{5}$ Gregory, Holton, Robinson, and Walker, J., 1962, 1269.
 ${ }^{6}$ Day, Nabney, and Scott, J., 1961, 4067.

